If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x=160
We move all terms to the left:
x^2+20x-(160)=0
a = 1; b = 20; c = -160;
Δ = b2-4ac
Δ = 202-4·1·(-160)
Δ = 1040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1040}=\sqrt{16*65}=\sqrt{16}*\sqrt{65}=4\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{65}}{2*1}=\frac{-20-4\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{65}}{2*1}=\frac{-20+4\sqrt{65}}{2} $
| 1/4-3/4k=6/k | | 2-x/3+x=1/4 | | w/10-5=-3 | | 23w+10w+6w-11w-24w=36 | | 7x-(2x-4)=3x+14 | | 7w-w-2w+9w+5=31 | | 4(3-x)=5(x+2) | | T/11+u/4=12 | | -2(3x+8)=3x+20 | | 19w+4w-11w-2w+8w-2=16 | | 5h+h-2h-3h=19 | | h-h+2h=18 | | 2/5d=8 | | 17d-11d+d-6d=13 | | -7x-2=13 | | 4m-4m+4m=12 | | 3/4y-1/5y=1/6y-1 | | J/9+k/8=10 | | 6y-5y-y+2y+2=10 | | 1/9+1/k=5 | | 18j+3j-16j+4j-1=17 | | 2y-8=3(5y-7)-2-13y | | 14t+2t-11t=5 | | v-v+5v-3v=16 | | 3(8-5x)-2=-3x-6-12x | | S+5s-5s+1=6 | | ?x9=27 | | 139(x+14)=180 | | 1x=72 | | 139(x+14=180 | | 9b-7b-b+3=7 | | 12d-6d-4d=10 |